
Lecture 4 on Sept. 16

In the lecture today, we assume f(z) = u(x, y) + iv(x, y) where u and v are real-valued functions. We call f
is derivable at z = z0 if the following limit exists

lim
z→z0

f(z)− f(z0)

z − z0
.

Moreover we denote by f ′(z0) the above limit. Notice here that in the 2-D complex plane, we have infinitely
many ways to approach z0. The above limit require a unique limit which is independent of how we approach
z0. Now we consider two specific limiting procedures. The first one is to approach z0 along the x-axis, then
we can assume z = x0 + h+ iy0 where h is a real number. Therefore it holds

f ′(z0) = lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h
= ∂xu(z0) + i ∂xv(z0).

We can also approach z0 along the y-axis, then z = z0 + ih. Furthermore it follows that

f ′(z0) = lim
h→0

u(x0, y0 + h)− u(x0, y0)

ih
+ i

v(x0, y0 + h)− v(x0, y0)

ih
= −i ∂yu(z0) + ∂yv(z0).

By the above two equalities, if f is derivable at z = z0, then

∂xu(x0, y0) = ∂yv(x0, y0), ∂xv(x0, y0) = −∂yu(x0, y0). (0.1)

This is the so-called Cauchy-Riemann equation. In fact the Cauchy-Riemann equation also provides us with
a criterion to determine if a complex function is derivable at z0. That is

Theorem 0.1. f is derivable at z = z0 if and only if (0.1) holds at (x0, y0).

With the above arguments, we have

Definition 0.2. Given Ω a sub-domain in the complex plane, we call f is derivable or holomorphic on Ω if
f is derivable at all points in Ω.

Example 1: Find out all holomorphic functions on C whose imaginary part is 0;

Example 2: Find out all holomorphic functions on C whose real part is given by u(x, y) = x2 − y2;

Example 3: Find out all holomorphic functions on C whose real part is given by u(x, y) = ex cos y.

Example 4: Show that sin(xy) can not be the real part of some holomorphic functions on C.

We have another criterion to determine if a function is derivable. Given z = x+ iy, we have

x =
z + z̄

2
, y =

z − z̄
2i

. (0.2)

Then by the chain rule, formally we have

∂z̄ = ∂x
∂x

∂z̄
+ ∂y

∂y

∂z̄
=

1

2
∂x −

1

2i
∂y.

Therefore for a given function f , it holds

∂z̄f =
1

2
∂x(u+ iv)− 1

2i
∂y(u+ iv) =

1

2
(∂xu− ∂yv) +

i

2
(∂xv + ∂yu) .
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Applying the Cauchy-Riemann equation (0.1) to the above equality, we know that if f is derivable in some
domain Ω, then in Ω we have ∂z̄f ≡ 0. In other words, after the change of variables in (0.2), holomorphic
functions admit only variable z in the expression of f .

Example 5: Now we consider Example 2 above. In this example, we know that f = x2 − y2 + 2xyi is
holomorphic on C. By (0.2), we know that

f =

(
z + z̄

2

)2

−
(
z − z̄

2i

)2

+ 2

(
z + z̄

2

)(
z − z̄

2i

)
i = z2.

Clearly we know that f depends only on variable z.

Example 6: f = |z|2 is not holomorhpic since f = zz̄ which tells us that ∂z̄f = z 6= 0. f = x is not
derivable neither in that f = (z + z̄)/2 which shows that ∂z̄f = 1/2 6= 0.

Remark 0.3. From Theorem 0.1 and Definition 0.2, we know that the differentiability of a complex function
is quite different from the differentiability of real-valued functions. For f(z) = u(x, y) + i v(x, y), u and v
must satisfy the Cauchy-Riemann equation so that the defined function f can be derivable. Usually even
though u and v are smooth real-valued functions, but the complex function f = u+ i v can be non-derivable
(c.f. Example 6). The Cauchy-Riemann equation is a very restrictive condition for a function to be derivable.
However on the other hand, we might have more elegant features for the family of holomorphic functions.

One of the most important features satisfied by holomorphic functions are the following maximum mod-
ulus theorem. we just state the result without proof.

Theorem 0.4. If f is holomorphic on Ω, then |f(z)| achieve its maximum value on ∂Ω.

Now we begin to study some elementary functions. Firstly let us consider polynomials.

Definition 0.5. We call Pn(z) = a0 + a1z + ...+ anz
n a polynomial of order n if an 6= 0.

Two properties of polynomials are important to us. The first one is

Theorem 0.6 (Fundamental Theorem of Algebra). Suppose that Pn(z) is a polynomial of order n. Then
Pn(z) = 0 has at least one solution in C.

By induction, we can show from Theorem 0.6 that

Corollary 0.7. Any polynomial of order n can be factorized as follows:

Pn(z) = cΠn
k=1(z − αk).

Here we give a proof of Theorem 0.6 by Theorem 0.4.

Proof of Theorem 0.6 . If Pn(z) has no solution in C, then

Q(z) =
1

Pn(z)

is well defined and holomorphic on C. By Theorem 0.4, we have

sup
BR(0)

|Q(z)| ≤ sup
|x|=R

|Q(z)| −→ 0, as R −→∞.

Here BR(0) is the disk centering at 0 with radius R. The above limit shows that Q(z) ≡ 0. Or equivalently
Pn(z) ≡ ∞. But this is impossible. The proof is finished.
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